Screening of deoxyribozyme with high reversal efficiency against multidrug resistance in breast carcinoma cells
نویسندگان
چکیده
Specific inhibition of P-glycoprotein (Pgp) expression, which is encoded by multidrug resistance gene-1 (MDR1), is considered a well-respected strategy to overcome multidrug resistance (MDR). Deoxyribozymes (DRz) are catalytic nucleic acids that could cleave a target RNA in sequence-specific manner. However, it is difficult to select an effective target site for DRz in living cells. In this study, target sites of DRz were screened according to MDR1 mRNA secondary structure by RNA structure analysis software. Twelve target sites on the surface of MDR1 mRNA were selected. Accordingly, 12 DRzs were synthesized and their suppression effect on the MDR phenotype in breast cancer cells was confirmed. The results showed that 4 (DRz 2, 3, 4, 9) of the 12 DRzs could, in a dose-dependent response, significantly suppress MDR1 mRNA expression and restore chemosensitivity in breast cancer cells with MDR phenotype. This was especially true of DRz 3, which targets the 141 site purine-pyrimidine dinucleotide. Compared with antisense oligonucleotide or anti-miR-27a inhibitor, DRz 3 was more efficient in suppressing MDR1 mRNA and Pgp protein expression or inhibiting Pgp function. The chemosensitivity assay also proved DRz 3 to be the best one to reverse the MDR phenotype. The present study suggests that screening targets of DRzs according to MDR1 mRNA secondary structure could be a useful method to obtain workable ones. We provide evidence that DRzs (DRz 2, 3, 4, 9) are highly efficient at reversing the MDR phenotype in breast carcinoma cells and restoring chemosensitivity.
منابع مشابه
RNAi Induced Inhibition of MRP1 Expression and Reversal of Drug Resistance in Human Promyelocytic HL60 Cell Line
Multidrug resistance (MDR) is a complex phenomenon in which many different genes regulating drug transport, cellular repair, detoxification and drug metabolism are involved. Nevertheless, in most drug resistant cell lines and cancer patients up-regulation of ABC-transporter genes such as MDR associated Protein (MRP1) gene could be at the basis of the drug resistance phenotype. We aimed to decre...
متن کاملFulvestrant reverses doxorubicin resistance in multidrug-resistant breast cell lines independent of estrogen receptor expression
Drug resistance, a major obstacle to successful cancer chemotherapy, frequently occurs in recurrent or metastatic breast cancer and results in poor clinical response. Fulvestrant is a new type of selective estrogen receptor (ER) downregulator and a promising endocrine therapy for breast cancer. In this study, we evaluated the combination treatment of fulvestrant and doxorubicin in ER-negative m...
متن کاملInhibition of Akt phosphorylation attenuates resistance to TNF-α cytotoxic effects in MCF-7 cells, but not in their doxorubicin resistant derivatives
Objective(s): Acquisition of TNF-α resistance plays role in the onset and growth of malignant tumors. Previous studies have demonstrated that MCF-7 cell line and its doxorubicin resistant variant MCF-7/Adr are resistant against the cytotoxic effects of TNF-α. In this study, we investigated the role of Akt activation in resistance of MCF-7 and MCF-7/Adr against TNF-α cytotoxicity. Materials and ...
متن کاملReversing multidrug resistance in breast cancer cells by silencing ABC transporter genes with nanoparticle-facilitated delivery of target siRNAs
BACKGROUND Multidrug resistance, a major impediment to successful cancer chemotherapy, is the result of overexpression of ATP-binding cassette (ABC) transporters extruding internalized drugs. Silencing of ABC transporter gene expression with small interfering RNA (siRNA) could be an attractive approach to overcome multidrug resistance of cancer, although delivery of siRNA remains a major hurdle...
متن کاملReversal effect of Dioscin on multidrug resistance in human hepatoma HepG2/adriamycin cells.
Multidrug resistance is a serious obstacle encountered in cancer treatment. Since drug resistance in human cancer is mainly associated with overexpression of the multidrug resistance gene 1 (MDR1), the promoter of the human MDR1 gene may be a target for multidrug resistance reversion drug screening. In the present study, HEK293T cells were transfected with pGL3 reporter plasmids containing the ...
متن کامل